Analysis of an augmented mixed-FEM for the Navier-Stokes problem
نویسندگان
چکیده
In this paper we propose and analyze a new augmented mixed finite element method for the Navier-Stokes problem. Our approach is based on the introduction of a “nonlinear-pseudostress” tensor linking the pseudostress tensor with the convective term, which leads to a mixed formulation with the nonlinearpseudostress tensor and the velocity as the main unknowns of the system. Further variables of interest, such as the fluid pressure, the fluid vorticity and the fluid velocity gradient, can be easily approximated as a simple postprocess of the finite element solutions with the same rate of convergence. The resulting mixed formulation is augmented by introducing Galerkin least-squares type terms arising from the constitutive and equilibrium equations of the Navier-Stokes equation and from the Dirichlet boundary condition, which are multiplied by stabilization parameters that are chosen in such a way that the resulting continuous formulation becomes well-posed. Then, the classical Banach's fixed point Theorem and Lax-Milgram's Lemma are applied to prove well-posedness of the continuous problem. Similarly, we establish wellposedness and the corresponding Cea's estimate of the associated Galerkin scheme considering any conforming finite element subspace for each unknown. In particular, the associated Galerkin scheme can be defined by employing Raviart-Thomas elements of degree k for the nonlinear-pseudostress tensor, and continuous piecewise polynomial elements of degree k+1 for the velocity, which leads to an optimal convergent scheme. In addition, we provide two iterative methods to solve the corresponding nonlinear system of equations and analyze their convergence. Finally, several numerical results illustrating the good performance of the method are provided. This contribution is based on joint work with Ricardo Oyarzúa (Universidad del Bio-Bio) and Giordano Tierra (Charles University).
منابع مشابه
Optimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کامل10th International Workshop on Variational Multiscale and Stabilized Finite Elements (VMS2015)
for 10th International Workshop on Variational Multiscale and Stabilized Finite Elements (VMS2015) Some open problems of inf-sup stable FEM for incompressible flow problems G. Lube∗ Georg-August University Göttingen, Institute for Numerical and Applied Mathematics [email protected] In this talk, I will address some open problems occuring in the numerical approximation of incompressibl...
متن کاملNumerical methods for the Stokes and Navier-Stokes equations driven by threshold slip boundary conditions
In this article, we discuss the numerical solution of the Stokes and Navier-Stokes equations completed by nonlinear slip boundary conditions of friction type in two and three dimensions. To solve the Stokes system, we first reduce the related variational inequality into a saddle point-point problem for a well chosen augmented Lagrangian. To solve this saddle point problem we suggest an alternat...
متن کاملMathematical Analysis and Finite Element Strategy for 3d Numerical Simulation of Navier Stokes Equations in Thin Domains
In this lecture, we will particularly analyze the effect of the shallowness on the Navier Stokes equations, together with anisotropic eddy viscosities. We will derive as an asymptotic model the hydrostatic approximation of the Navier Stokes equations. We will present a stable mixed 3D-FEM discretization, which allows for the computation of the 3D-velocity as a whole. Let us emphasize that verti...
متن کاملApplications of Mathematics
In this paper we propose a method for improving the convergence rate of the mixed finite element approximations for the Stokes eigenvalue problem. It is based on a postprocessing strategy that consists of solving an additional Stokes source problem on an augmented mixed finite element space which can be constructed either by refining the mesh or by using the same mesh but increasing the order o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 86 شماره
صفحات -
تاریخ انتشار 2017